In What Sense is the Kolmogorov - Sinai Entropy a Measure for Chaotic Behaviour ? - Bridging the Gap

نویسنده

  • Roman Frigg
چکیده

On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this justification for the case of Hamiltonian systems by proving that the KSE is equivalent to a generalized version of Shannon’s communicationtheoretic entropy under certain plausible assumptions. I then discuss consequences of this equivalence for randomness in chaotic dynamical systems. ∗Published in British Journal for the Philosophy of Science 55, 2004, 411-434. The PDF file of the article is available at http://www.romanfrigg.org/writings.htm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In What Sense is the Kolmogorov-Sinai Entropy a Measure for Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory and Communication Theory

On an influential account, chaos is explained in terms of random behaviour; and random behaviour in turn is explained in terms of having positive Kolmogorov-Sinai entropy (KSE). Though intuitively plausible, the association of the KSE with random behaviour needs justification since the definition of the KSE does not make reference to any notion that is connected to randomness. I provide this ju...

متن کامل

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Observational Modeling of the Kolmogorov-Sinai Entropy

In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then   the ergodic properties of relative  semi-dynamical systems are investigated.  Also,  a relative version of Kolmogorov-Sinai theorem  is given. Finally, it is proved  that the relative entropy of a...

متن کامل

Hierarchy of piecewise non - linear maps with non - ergodicity behavior

We study the dynamics of hierarchy of piecewise maps generated by one-parameter families of trigonometric chaotic maps and one-parameter families of elliptic chaotic maps of cn and sn types, in detail. We calculate the Lyapunov exponent and Kolmogorov-Sinai entropy of the these maps with respect to control parameter. Non-ergodicity of these piecewise maps is proven analytically and investigated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003